

Poster abstract submission

Approval Status

Not Started

Presenting author

Lucy Hathaway

Presenting author's email

lucy.hathaway@unibe.ch

Affiliation(s)

Alterbiotix
c/o Institute for Infectious Diseases
University of Bern

Country

Switzerland

Type of organization

Academic / research institution

Poster title

First-in-class peptides targeting a novel *Streptococcus pneumoniae* intervention point (Ami-AliA/AliB permease)

Poster abstract

Background: Pneumococcal meningitis, caused by *Streptococcus pneumoniae*, has a mortality rate of up to 50% and causes long-term damage to the brain and / or hearing in up to 50% of survivors. Damage is largely due to an excessive inflammatory response, exacerbated by bacteriolytic antibiotics that cause the release of bacterial toxins. There is a high unmet medical need for non-bacteriolytic antimicrobials as alternative / adjuvant therapeutic options.

Our solution: An 11-amino acid peptide, originally discovered in the secretome of *Klebsiella pneumoniae*, named V11A, inhibits growth of *S. pneumoniae* in a bacteriostatic and species-specific manner, following uptake via the Ami permease. V11A reduces growth of *S. pneumoniae* in human cerebrospinal fluid. In an infant rat model of pneumococcal meningitis, V11A reduced the number of *S. pneumoniae* bacteria in cerebrospinal fluid and blood, and reduced the concentration of inflammatory cytokines in CSF.

Conclusion: Our results support the potential of therapeutic peptide to reduce the bacterial burden and mitigate the inflammatory response in pneumococcal meningitis. Alterbiotix is using this discovery to pioneer a new class of non-antibiotic therapeutics that target *S. pneumoniae* through a unique mechanism: selective uptake via the Ami permease.

Research topic

Microbiology