

Poster abstract submission

Approval Status

Not Started

Presenting author

Olivier Lesouhaitier

Presenting author's email

olivier.lesouhaitier@univ-rouen.fr

Further authors (if any)

1,2 Lesouhaitier Olivier, 2 Tahrioui Ali, 2 Louis Mélissande, 2 Forge Adrien, 3 Varin-Simon Jennifer, 3 Reffuveille Fany, 2 Rodrigues Sophie, 1 Michel Anne, 4 Grandjean Teddy, 4 Gosset Philippe, 2 Chevalier Sylvie

Affiliation(s)

1 Hermione Therapeutics, 426, rue des Divaises, 14160 Dives-sur-Mer, Normandy, France
 2 Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses CBSA UR4312, Université de Rouen Normandie, 27000 Evreux, France
 3 Université de Reims Champagne-Ardenne, BIOS, 51100 Reims, Grand Est, France
 4U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille 59000 Lille, France

Country

France

Type of organization

Academic / research institution

Poster title

Development of the Atrial Natriuretic Peptide as new powerful drug against *Pseudomonas aeruginosa* and *Staphylococcus aureus* resistant strain biofilms: its mechanism of action and therapeutic potential

Poster abstract

1B of people suffer globally from a chronic respiratory disease. *Pseudomonas aeruginosa* (Pa) is an opportunistic pathogen responsible for repeated exacerbations in patients with chronic lung diseases such as bronchiectasis, COPD or CF, maintaining an inflammation vortex, degrading pulmonary function, quality of life and prognosis. During these infectious episodes, bacteria are protecting themselves in a "shield" called a biofilm increasing their adaptability and tolerance against the host's immune defences and antibiotic treatments. Current treatments do not result in complete bacteria eradication leading to recurrence of exacerbations, long duration antibiotic cures majoring risk of resistance.

There is an urgent need to develop disruptive anti-infective strategies. Dispersing biofilm is a promising approach that allows antibiotics to come back into direct contact with bacteria. In the present study, we evaluated the dispersal ability of the natural human hormone Atrial Natriuretic Peptide (ANP) on mature Pa biofilms. We also evaluated ANP's capacity to disperse Gram-positive *Staphylococcus aureus* mature biofilms often mixed with Pa's during the infectious process.

We both observed that ANP prevents the formation of Pa biofilms and strongly disrupts pre-formed biofilms in a dose-dependent manner. Interestingly, we demonstrated that ANP dispersal activity requires the presence of the Pa AmiC sensor protein, suggesting specific activity on bacterial physiology. As ANP has no antibacterial activity, we validated *in vitro* that it acts as an adjuvant agent, enhancing the anti-biofilm action of various antibiotics to allow almost complete eradication of biofilms (see graph). Finally, we investigated the effects of ANP alone or in combination with tobramycin on biofilm dispersion *in vivo* using a chronically infected mouse model. We observed a significant reduction in bacterial load in the lungs of infected mice after three consecutive days of ANP exposure, either alone or in combination with

tobramycin, compared with a single tobramycin exposure. Finally, we found, *in vitro*, that ANP can strongly disperse mature biofilms formed by various strains of *S. aureus*, including methicillin-resistant strains. Overall, these data suggest that ANP could be not only a new therapeutic tool for controlling *Pa* infections and improve chronic respiratory patients' outcomes but more broadly to fight against many other infections caused by various antibiotic-resistant pathogens.

Research topic

Biological therapeutics

If you wish to submit a graphic with your abstract you can upload it here.

Lesouhaitier graphic AMR Basel 2026.pdf