

Poster abstract submission

Approval Status

Not Started

Presenting author

Nhung Nguyen

Presenting author's email

thi.hong.nhung.nguyen@univie.ac.at

Further authors (if any)

Ann-Kathrin Mix, Thomas Boettcher,
Christof Hauck

Affiliation(s)

University of Vienna, Microbial Biochemistry, Wien, Austria

Country

Austria

Type of organization

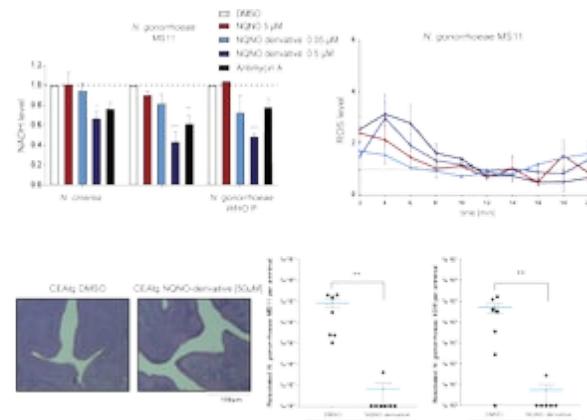
Academic / research institution

Poster title

First-in-class, ultra-narrow spectrum antibacterial with a novel mode of action against multidrug-resistant *Neisseria gonorrhoeae*

Poster abstract

Gonorrhea is a major sexually transmitted disease, affecting approximately 80 million people annually. The emergence of multi-drug resistant (MDR) *Neisseria gonorrhoeae* has caused many frontline antibiotics to be ineffective, creating an urgent need for novel therapeutic classes. By exploring the chemical inventory of competitive bacterial interactions, we identified 2-nonyl-4-quinolone N-oxide (NQNO), a secondary metabolite produced by *Pseudomonas aeruginosa*, which exhibits unprecedented selectivity against *N. gonorrhoeae*.


Our study demonstrates that NQNO possesses exceptional efficacy against the pathogen, including the multidrug-resistant gonococcal strains. Strikingly, NQNO remains inactive against commensal *Neisseria* species, vaginal *Lactobacilli*, and other mucosal microbes. Crucially, the compound showed no toxicity against human cells and demonstrated an acceptable safety profile across all tests. Mechanistic studies revealed a unique mode of action: NQNO disrupts the gonococcal electron transport chain (ETC), leading to ATP/NADH depletions and increased oxidative stress, which subsequently triggers the release of the endogenous Zeta1 toxin.

Structure-activity relationship (SAR) optimization led to the development of NQNO derivatives with low nanomolar potency, bactericidal activity, and lack of resistance development. In a humanized mouse model of vaginal infection, topical applications of NQNO-derived compounds successfully eradicated the pathogen. These findings introduce a novel strategy for selectively targeting *N. gonorrhoeae* by exploiting the electron transport chain, paving the way for the development of an ultra-narrow-spectrum antibiotic to combat multidrug-resistant gonococci.

Research topic

Small molecule therapeutics

If you wish to submit a graphic with your abstract you can upload it here.

