

Poster abstract submission

Approval Status

Not Started

Presenting author

Viorica Patrulea

Presenting author's email

vierica.patrula@unige.ch

Further authors (if any)

Viorica Patrulea (1, 2)
 Cintia Cristina Santi Martignago (1, 2, 3)
 Karl Perron (1, 2, 4)
 Emmanuelle Sublet (1, 2)
 Bee Ha Gan (5)
 Verena Ducret (4)
 Takehisa Hanawa (6)
 Marlène Durand (7, 8)
 Martine Renard (7)
 Samantha Roques (7)
 Sylvain Catros (9)
 Claire Deroy (7, 10)
 Gerrit Borchard (1, 2)
 Jean-Louis Reymond (5)
 Olivier Jordan (1, 2)

Affiliation(s)

1) Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
 2) School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
 3) Scientific Institute and Technological Department, University of Brazil, São Paulo, 08230-030, Itaquera SP, Brazil
 4) Microbiology Unit, Department of Plant Sciences, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
 5) Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
 6) Laboratory of Pre-Formulation Study, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Chiba, Japan
 7) CHU de Bordeaux, INSERM, Institut Bergonié, CIC 1401, F-33000 Bordeaux, France
 8) University of Bordeaux, INSERM, Institut Bergonié, BioTis, U1026, CIC 1401, F-33000 Bordeaux, France
 9) CHU Bordeaux, Department of Oral Surgery, F-33076 Bordeaux, France
 10) DMV MDCs, Dipl. ecv, Clinique vétérinaire Humanea F-33310 Lormont, France

Country

Switzerland

Type of organization

Academic / research institution

Poster title

Pre-Clinical Development of a Peptide Dendrimer–Chitosan Conjugate for *P. aeruginosa* Wound Infections

Poster abstract

Background: The management of *Pseudomonas aeruginosa*-infected wounds remains a critical clinical challenge due to the high incidence of antimicrobial resistance, highlighting the need for alternative therapeutic strategies.

Aim: This study evaluated the antimicrobial and wound healing potential of antimicrobial dressings based on third-generation antimicrobial peptide dendrimers (AMPDs), G3KL, coupled to chitosan derivatives against *P. aeruginosa* infections both in vitro and in vivo.

Methods: The AMPD-chitosan conjugates were synthesised, characterised and incorporated into hydrogel-based wound dressings. Their antimicrobial activity was assessed in vitro against the ESKAPE panel and in vivo in a *P. aeruginosa*-infected mouse model. Biocompatibility and wound-healing were assessed in a non-infected wound model.

Results: Our studies demonstrated that covalent coupling of AMPDs to chitosan derivatives enhanced stability, preserved antibacterial efficacy, and reduced hemolysis and cytotoxicity. Notably, third-generation AMPD-chitosan conjugates showed high bactericidal activity in vitro against ESKAPE pathogens.

Their incorporation into wound dressings promoted wound healing, reduced expression of pro-inflammatory cytokines (TNF- α , IL-6), and increased production of anti-inflammatory IL-10.

In vivo, the dressings provided robust protection in *P. aeruginosa*-infected mice while showing excellent biocompatibility in a non-infected mouse model.

Impact: Therefore, these results demonstrate that AMPD-chitosan conjugates are a promising therapeutic platform for treating persistent *P. aeruginosa* wound infections, combining broad-spectrum activity, wound healing promotion, and safety in pre-clinical models.

Research topic

Small molecule therapeutics

If you wish to submit a graphic with your abstract you can upload it here.

AMR conf_GA_1622.pdf