

Poster abstract submission

Approval Status

Not Started

Presenting author

Carlos Ratia

Presenting author's email

carlos.ratia@txnsystems.com

Further authors (if any)

Enrico Wolff^{1 2}, Elias S.J. Arnér^{1 2}

Affiliation(s)

¹ Thioredoxin Systems AB, Solna, 171 65, Sweden. <https://www.txnsystems.com/>

² Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden

Country

Sweden

Type of organization

Industry / company

Poster title

EbsArgent™, a synergistic ebselen–silver combination targeting bacterial thioredoxin reductase with bactericidal activity against a wide range of multidrug-resistant bacteria

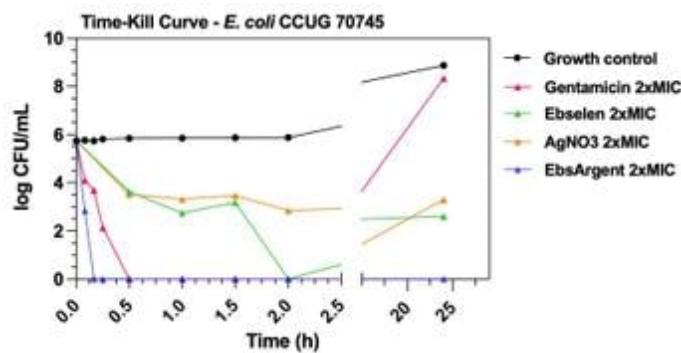
Poster abstract

Background:

The global rise of antimicrobial resistance has created an urgent need for antibacterial agents with novel mechanisms of action and low propensity for cross-resistance with current antibiotics. EbsArgent™ is a combination of ebselen and silver with bactericidal activity through inhibition of bacterial thioredoxin reductase (TrxR), a target not addressed by current clinical antibiotics. TrxR is essential for bacterial redox homeostasis yet structurally and functionally distinct from the mammalian enzyme, supporting selective antibacterial activity.

Methods: Antibacterial activity was assessed by broth microdilution (EUCAST) to determine MIC and MIC₉₀ values against panels of multidrug-resistant (MDR) clinical isolates. Early time-kill assays were performed against an MDR *Escherichia coli* clinical isolate (ESBL/NDM-positive) at 0.5–2×MIC. Resistance development was assessed by serial passage and high-inoculum selection. *In vivo* efficacy and tolerability were explored in murine peritonitis and thigh infection models.

Results: EbsArgent™ exhibited potent activity against MDR pathogens (typical MIC 0.125–1 µg/mL for *E. coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, *Staphylococcus aureus* and *Salmonella* spp.). MIC₉₀ values were 1 µg/mL for *E. coli* (n=111) and 2 µg/mL for *K. pneumoniae* (n=100), with similarly narrow distributions for *P. aeruginosa* and *A. baumannii*. Activity was retained against *E. coli* strains with high-level silver resistance where AgNO₃ monotherapy was inactive, and no detectable resistance emerged under standardized selection conditions. In early time-kill assays, EbsArgent™ produced rapid, concentration-dependent killing, reaching near-complete loss of viable counts within 10–20 min at 1–2×MIC, whereas ebselen, AgNO₃ or gentamicin alone induced partial early reductions followed by regrowth (Figure). *In vivo*, EbsArgent™ produced log₁₀ reductions in bacterial burden relative to vehicle controls in intraperitoneal and localized thigh infection models within a single


day of treatment.

Conclusions: EbsArgent™ shows potent in vitro activity against MDR Gram-negative pathogens with exceptionally rapid bactericidal kinetics, consistent with acute disruption of bacterial viability. Together with low mammalian cell toxicity and good tolerability in mice, these data support EbsArgent™ as a differentiated redox-targeting antibacterial modality that circumvents current MDR profiles and warrants further development.

Research topic

Small molecule therapeutics

If you wish to submit a graphic with your abstract you can upload it here.

