

Poster abstract submission

Approval Status

Not Started

Presenting author

Fernando Sanz-García

Presenting author's email

f.sanzg@unizar.es

Further authors (if any)

Sebastian A. Moreira 2
Santiago Ramon-Garcia 1,3
Ainhoa Lucia 1
Ana Benitez 1
Lara Muñoz-Muñoz 1
Maria Santos Martinez-Martinez 4 Federico Romano 2
Puja Nijhara 5
Karen Langfeld 6
Oscar Della Pasqua 2,7

Affiliation(s)

1 Department of Microbiology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
2 Clinical Pharmacology Modelling and Simulation, GSK R&D, London, UK
3 Research & Development Agency of Aragón (ARAID) Foundation, Zaragoza, Spain
4 Drug Metabolism and Pharmacokinetics, GSK Tres Cantos, Spain
5 General Medicine, Medical Affairs, GSK, Mumbai, India
6 General Medicine, Medical Affairs, GSK, London, UK
7 Clinical Pharmacology & Therapeutics Group, University College London, UK

Country

Spain

Type of organization

Academic / research institution

Poster title

Dealing with the myth of 40% T>MIC for amoxicillin clavulanate: a hollow-fiber study using clinically relevant concentrations

Poster abstract

Time above the minimum inhibitory concentration (T>MIC) has been shown to correlate with the clinical efficacy of β -lactams. Optimization of treatment performance with amoxicillin/clavulanate (AMC) requires therefore regimens that potentially extend the T>MIC and consequently increase the probability of bacterial eradication and clinical cure. Currently, the AMC 14:1 (90 mg/6.4 mg, Augmentin ES®) is a frontline antibiotic for community-acquired bacterial infections, including community-acquired pneumonia and bacterial rhinosinusitis. In light of these premises, the objectives of this work were to establish the T>MIC associated with bacterial eradication following exposure of *S. pneumoniae* to AMC 14:1, and to

characterize the antibacterial activity and probability of target attainment (PTA) for different dosing regimens.

In that sense, an in vitro study using the hollow-fiber system (HFS) was conducted to characterize the effect of variable T>MIC for AMC 14:1 against *S. pneumonia*. Growth dynamics of *S. pneumoniae* were evaluated against a range of thresholds for T>MIC (0, 30, 40, 60%) over 24 hours, including strains with different susceptibility to AMC (MICAMC = 2 µg/ml and 4 µg/ml) for 10 days. Subsequently, the concentration-effect relationship of AMC 14:1 was evaluated against varying inocula of this pathogen. Serial bacterial counts were performed up to day 10 and AMC concentrations were analysed. Simulations were then implemented based on a population PK model to determine AMC 14:1 doses/regimens that maximize the PTA.

Growth dynamics results showed that *S. pneumoniae* demonstrated an increasing probability of eradication with increasing T>MIC of AMC. For the susceptible strain (MICAMC = 2 µg/ml), eradication required greater T>MIC (40%), regardless of inocula. For the less susceptible strain (MICAMC = 4 µg/ml), bacterial eradication was achieved only with 60% T>MIC, also regardless of inocula. Simulations demonstrated that higher PTA is achieved with higher doses and more frequent dosing.

In summary, HFS provides a valuable tool for the characterization of the implications of varying inocula, AMC concentrations and MIC thresholds for Augmentin ES® against different strains of *S. pneumoniae*. Besides, given the evolving bacterial resistance, simulations show that increased PTA is warranted for higher, more frequent doses of AMC.

Research topic

PK/PD