

Poster abstract submission

Approval Status

Not Started

Presenting author

Fernando Sanz-García

Presenting author's email

f.sanzg@unizar.es

Further authors (if any)

Diana A. Aguilar-Ayala 1

Ana Benítez-Lázaro 1

Lara Muñoz-Muñoz 1

Maxime R. Eveque-Mourroux 2 Dominique Ndjogou 2

Nicolas Willand 2

Evangelos Karakitsios 3

Sally Babiker 4

Silvia Grandoni 3

Umberto Villani 3

Oscar Della Pasqua 3,4

Juan Calvet-Seral 5

Lidia de Tapia 5

Alfonso Mendoza-Losana 5

Natalya Serbina 6

Ainhoa Lucía 1,7

Santiago Ramón-García 1,7,8

On behalf of the ERA4TB consortium.

Affiliation(s)

1 Department of Microbiology, University of Zaragoza, C/ Domingo Miral s/n 50009-Zaragoza, Spain

2 Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France.

3 Institute for Applied Computing "Mauro Picone", Consiglio Nazionale delle Ricerche (CNR), 00185 Rome, Italy.

4 Clinical Pharmacology & Therapeutics Group, University College London, London WC1J 9JP, UK

5 Biomedical Sciences and Engineering Laboratory, Bioengineering Department, Universidad Carlos III de Madrid, Madrid, Spain.

6 The Global Alliance for TB Drug Development, New York, NY, United States

7 Spanish Network for Research on Respiratory Diseases (CIBERES), Carlos III Health Institute, 28029 Madrid, Spain

8 Research & Development Agency of Aragón (ARAID) Foundation, Zaragoza, Spain.

Country Spain

Type of organization

Academic / research institution

Poster title

Assessment of feasibility of the hollow-fiber system for PKPD studies of diarylquinolines

Poster abstract

The hollow-fiber system for tuberculosis (HFS-TB) is a preclinical in vitro pharmacokinetic/pharmacodynamic (PKPD) tool endorsed by the European Medicines Agency to underpin anti-TB drug development. It can inform the design of Phase II/III clinical trials by mimicking in vivo PKPD parameters of anti-TB compounds, which may feed ulterior in silico models. The diarylquinoline bedaquiline (BDQ) belongs to the WHO essential antimicrobials list to treat drug-resistant TB. However, its adverse effects restrict its use. In contrast, TBAJ-587 is a next-generation diarylquinoline with enhanced anti-TB activity and safer properties. To implement the use of TBAJ-587 in the HFS-TB, we evaluated the compatibility of both diarylquinolines with two types of fibers, finding that both molecules displayed a high degree of unspecific binding to most materials in the model. To optimize the protocol, we performed a set of proof-of-concept assays with BDQ, including different infusion ports, high concentrations to overcome the binding, and saturation procedures. In light of these tests, we designed a strategy to mimic total lung [TBAJ-587]median derived from 100 mg or 200 mg quaque die (QD; once daily), built on a physiologically-based pharmacokinetic (PBPK) model that enabled the extrapolation of lung pharmacokinetics from mice to humans. Then, a PKPD assay with *M. tuberculosis* H37Ra strain against 100 mg, 200 mg and 400 mg QD of TBAJ-587 for 7 and 14 days, and with non-replicating Ss18b strain against 100 mg and 200 mg QD of TBAJ-587 for 7 days; was carried out. Bacterial dynamics were monitored by colony forming units (CFU)/mL, most probable number (MPN), ribosomal RNA synthesis (RS) ratio and molecular bacterial load assay (MBLA). Results showed that 200 mg QD and 400 mg QD of TBAJ-587 eradicated H37Ra strain at day 2, whereas 100 mg QD-treated bacteria relapsed. Conversely, both 100 and 200 mg QD of TBAJ-587 eradicated Ss18b strain at day 10. Target [TBAJ-587]median was successfully imitated against H37Ra, while in Ss18b drug levels were below the expected threshold, likely because medium composition for this strain affects TBAJ-587's stability. Hence, the compound behaviour in the system should be taken into account when interpreting the results. To sum up, we have developed a method to mimic total drug concentrations of diarylquinolines in the lung against various *M. tuberculosis* strains, which, along with PK modelling, can provide useful data on TBAJ-587 monotherapy.

Research topic

PK/PD