

Poster abstract submission

Approval Status

Not Started

Presenting author

Alexander Titz

Presenting author's email

alexander.titz@helmholtz-hzi.de

Further authors (if any)

Marta Czekańska^{1,2,3}, Thorsten Kinsinger^{1,2,3}, Grace Kaul⁴, Lisa Marie Denig^{1,2,3}, Dirk Hauck^{1,2,3}, Andreas Kany^{1,3,5}, Sophie Wallrich^{1,2,3}, Thorsten Kinsinger^{1,2,3}, Carole Baumann^{1,3,5}, Abdul Akhir⁴, Anna K. H. Hirsch^{1,3,5}, Martin Köllen¹, Stephan Sieber¹, Sandeep Verma⁷, Nicolay Kirilov⁸, Markus Bischoff⁸, Jennifer Herrmann^{1,3,5}, Rolf Müller^{1,3,5}, Rusudan Okujava⁹, Sidharth Chopra⁴

Affiliation(s)

- 1 Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
- 2 Department of Chemistry, PharmaScienceHub, Saarland University, Saarbrücken, Germany
- 3 Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig
- 4 Department of Microbiology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
- 5 Department of Pharmacy, PharmaScienceHub, Saarland University, Saarbrücken, Germany
- 6 Department of Chemistry, Technical University of Munich, Garching, Germany
- 7 Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
- 8 Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- 9 Infectious Diseases, pRED, F. Hoffmann-LaRoche Ltd., 4070 Basel, Switzerland

Country

Germany

Type of organization

Academic / research institution

Poster title

Novel thiourea antibiotic against MDR *Acinetobacter baumannii* with in vivo activity

Poster abstract

The increasing prevalence of drug-resistant pathogens is a looming crisis that risks to set back decades of advances in global health. Among these superbugs, carbapenem-resistant *Acinetobacter baumannii* stands out as one of the most serious threats, according to the World Health Organization.

In 2018, CDRI identified the thiourea derivative SRI-12742 as an antibiotic against AB (Chopra et al, Int. J. Antimicrob. Agents (2018) 22–27). The compound's MIC is 4 µg/mL against the MDR AB isolate BAA-1605 and activity for clinical strains was assessed (MICs 4 µg/mL to >64 µg/mL). SRI-12742 exhibited concentration-dependent bactericidal activity. In a murine neutropenic thigh infection model of AB infection, SRI-12742 reduced CFU counts by ca. 0.9 log₁₀ CFU, comparable to polymyxin B.

In our collaborative work, the hit was synthetically expanded with over 250 synthetic derivatives and an SAR was established. A highly active derivative was identified with MICs down to 0.125-0.5 µg/mL against 220 clinical isolates of diverse *Acinetobacter* species including multidrug resistant strains and CRAB. A novel mode-of-action has been suggested based on absence of cross resistance and affinity proteomics. First safety pharmacology assessment revealed good selectivity. The frontrunner showed efficacy in *A. baumannii* infection experiments in zebrafish and mice.

Research topic

Small molecule therapeutics