

Poster abstract submission

Approval Status

Not Started

Presenting author

Ingrid Wanninger

Presenting author's email

iw@hypharm.de

Further authors (if any)

Idelevich EA1,2, Krismer B3,4, Zago M5, Schmidt A6, Goy S7,8, Hesterkamp T7,8, Wanninger I9, Winter G10, Volc S11, Peschel A3,4* Becker K1*

* shared last authorship

Affiliation(s)

- 1 Friedrich Loeffler-Institute for Medical Microbiology, University Medicine Greifswald
- 2 Institute of Medical Microbiology, University Hospital Münster
- 3 Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen
- 4 German Center for Infection Research, partner site Tübingen
- 5 Center for Clinical Trials, Tübingen
- 6 Institute of Medical Microbiology and Hygiene, University Hospital Tübingen
- 7 Helmholtz Centre for Infection Research, Braunschweig
- 8 German Center for Infection Research, partner site Hannover - Braunschweig
- 9 HYpharm GmbH, Bernried
- 10 Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilian University München
- 11 Department of Dermatology, University Hospital Tübingen

Country

Deutschland

Type of organization

Academic / research institution

Poster title

Targeted Nasal Eradication of *Staphylococcus aureus* Using the Recombinant Lytic Agent HY-133: A New Strategy to Address Antimicrobial Resistance

Poster abstract

Staphylococcus aureus, particularly methicillin-resistant strains (MRSA), continues to pose a significant threat in healthcare settings, especially among high-risk patient populations. Conventional decolonization strategies, including mupirocin, are increasingly undermined by rising resistance rates, alterations of the commensal microbiota, and demanding application protocols. These limitations highlight the urgent need for alternative strategies that are rapid, specific, and capable of minimizing resistance development. The recombinant bacteriolytic agent HY-133 has been developed to address this gap. It combines the CHAP domain from the endolysin of bacteriophage K, responsible for enzymatic cleavage of bacterial cell walls, and the cell wall-binding domain of the staphylolytic enzyme lysostaphin. This chimeric design enables highly specific and efficient targeting of *S. aureus*, while sparing coagulase-negative staphylococci and other commensals of the nasal microbiome.

In vitro evaluation demonstrated that HY-133 exerts rapid and robust bactericidal activity against over 1,000 clinical *S. aureus* isolates including MRSA spanning more than 100 spa types and different phenotypic variants (1-4). Time-kill studies revealed a pronounced reduction in viable bacterial counts within two hours of exposure (5). These observations were corroborated by in vivo animal model studies, which demonstrated both safety and efficacy of HY-133 upon nasal application. HY-133 has been

manufactured in GMP quality as a stable, application-ready nasal formulation. Its clinical development has advanced to a randomized, double-blind, placebo-controlled phase 1 trial. This first-in-human study evaluates single and multiple dose regimens, assessing safety, tolerability, local effects, and preliminary efficacy. An extended study phase is also investigating its impact on the nasal microbiome.

Owing to its high specificity for *S. aureus*, rapid bactericidal action and low potential for resistance development, HY-133 represents a compelling candidate for targeted decolonization before hospital admission or surgical procedures. By preserving the resident microbiota, it may also reduce the likelihood of re-colonization and lower the risk of nosocomial infections. The ongoing clinical trial (NCT06290557) is expected to generate essential data on the capacity of HY-133 to reshape *S. aureus* eradication practices, introducing a novel precision-based approach to infection prevention.

Research topic

Clinical development

If you wish to submit a graphic with your abstract you can upload it here.

07012026_Abstract_AMR Congress_2... .pdf